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FOREWORD

This is an interim report of the work done under Centract F 33615-71-C-1927

by the lhiiversity of North Carolina. The wiork doae by Pranab Kumar Sen in

this report is sponsored by tha Aerospace Research Laboratories under the abov.e

contract; it was ac-omplished on Project 7071, "Research in Applied Mathmatics"

ard is techmically monitored by P. R. Krishnaiah of the Aerospace Research

Laboratories.
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ABSTRACT

By the use of a semi-martingale property of the Koimogo'cov supremum, the

results of Pyke [Proc. Cambri~dge Phil. Soc. 64 (1968), 155-160] on the weak

convergence of the empirical process with random sample size are s3,plified

and extended to the case of p(>l)-dimensional stochasti- vectors.
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1. Introiuc,.3n. Consider a secuence {Xi=(X 1,...,X P, i>l1} of independent

and ".. 'ically distributed stochastic p(>1)-vectori, defined on a probability

space (P,A,P), with each Xi havinu a continu-,js distribution function (df)

F(x), xeRp, the p-dimensional Euclidean space. We denote the marginal df of

X.. by F let Yie = F ](X ) j =,..,p, -Yi = (Yl'""-Yip). i l'

!... .t....t.. t and define
p

G(t) = P{Yij..j, i=1,. .p, teEp,

where EP = {t: O<ty.<, i--,...,pl. Then, the ampirical df for YI"'"Y is

defined by

(1.2) Gnt -- P-1 i c(t--Yi)' t-•eP"

where c(,':)-' iff u.>O, j=l,...,p; otherwise, c(u)=O. Consider then the

empirical peocess

(1.3) Wn(t) n,[G (n)-Gt)], telp,

and denote by

(1.4) Vn {Nn(t): tcEp}.

For p=i, it is well-known that N" weakly converges to a Brownian motion

No ={Wo(t): Ozt<I}. For p>1l. on the space DT[O,1] of all real ftnctions on

EP with no discontinuities of the second kind, W converges in distribution
n

(in the (extended) Skorokhod J I-topology) to an appropriate Gaussian function~,
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say, W {W(t): teE), where EýW(t)]=O, and

(1.5) E[W(s)W(t)] G(tts)-GCt)G(s), tsEp,

and :As = tAsl..., t AS ), where afLb = nin(a,b); tc refer to Neuhaus (1971)
1 ~ p

who also reviews the earlier literatvre.

Let now {N,, v>l1 be a sequence of positive integer-valued random variables,

sucn that

(1.6) v-IN V , in probabili-, as v-,
VN

where ý is a positive random variable defined on the same probability space

(1, A,P).

For p=l, iyke (1968) hli shown that under (1.6), WN converges in law to W°-

his result is extended he-_- to the general niultivariate case.

Theorem 1. Under (1.6), for every p>l,

W N , in the Skorokhod J,-typology on DP[O,l].
S V

The proof is outlined in section 3. Whereas, PyKe's arguments rely heavily

on the properties of an equivalently defined Poisson process. (which may become

quite complicated for pl), our approach is based on a simple semi-martingale

Dropcrty of the Kolmogorov supremum, which is considereA. first in section 2.

2. Some pre.iminary results. For zwo real valhed functions Ztt) and 7*(tl,

defined on EP, w2 let

(2.1) P(Z,Z*) Sup{jz(t)-Z-(t)I: tCEP),

and for every n>l, let
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(2.2) W+ = Sup{W n W: tcEP}, W- Su{-;Vn(-t- tEP};

(2.3) W: max{ ,Wn} = p(Wn,).

Let I be the u-field -enerated by {XI ,...,X), so tha;: is t in n (>1).
n 1 'n n

Then, we have the following

I.PMnia 2.1. {n½w W n>11 and {n:V, ;n>l} are both ncn-nagativ
11 n -n n

semi-martingale seq,,ences.

Proof. We only prove the result ior Wa, as the other fellows similarly. Note

that W' is, by definition, non-negative [as W (t)=O for t=O or t=l]. Let
n n ~ ~ -

n (eEi) be a point such that

,) W+= W (ta); to need not be unique.

n n --n n

Then, by definition,

(2.5) (n+l)½Wn (n-1)1 s W (n+l) ½ Qt0S(2.s) ÷l (n÷E. sun+l() n> n÷(°

so that, by (1.2), (1.3) and (2.5), for every n>1,

(2.6) E{(n+l) W~ n~l: n > E,(n+l) W n~(t 0 )j '

r' •-E{[c("t_-Y) - G(t0q)]I I I
ni=l -n n 1n

n 0 0
( n [t 0 Y. Gt'~)j +EI~c~t- (ti= n - n -n -'P+I .

n½W* + 0 = nYW,n n'

-'• . I



as, given if ct°-Y .) assumes the vaiue. 1 and 0 with respective conditional
n'a .+

probabilities G(t°) and 1-G(tn). Q.E.D.
-r. -i

Lemma 5.2. For every n>l, there exist two positive constants c 0 and

in~dependent of A, such that

(2. 7) Wn <__ c 0 /c, and (W) 2 } 1< c k

Proof. By partial integration,

(2.8) E{(Wn)2) 2 f xP{1n >xldx,
n0

;21

whare by Theorem 1 of Kiefer and Wolfowitz (1958), for all n>l,

(2.9) P{(• n>x} < C exp{-c x2 } for all x>0.
n ~ 0 1

Consequently, by (2.8) and (2.9), E{(Wn)2} < Co/c 1 . The other result follbws

similarly.

Lemma 2.3, For every c>O, there exists a positive K (<-), such that for every

;P~l C

(2.10) P{maxl<k<n (k/n)½pNVk,0) > K el < E.

Procf. By (2.3), for every c>0,

(2.11) P{maxl<k<n (k/n)½ P(Wk,O) > K)

{max ).K} -P max ½-> ½K

- l<k<n k E l<k<n k n

and hence, by Lemma 2.1 along with the Kolmogorov inequality fcr semi-martingales



S

[viz., Feller (1966. p. 235)], the right and side of (2.11) is bounded above by

4+w

(2.12) (nK 2 )-l nEl(W+21 2+ nEf (W-)2 ]

C n'i
- [E{ (W+)2} +

< 2c /c.K2, by Lemma 2.2.

The proof then follos by se/ectCng K >[2c/c Q.E.D.

SLewza 2.4. (Uniform coeitinuity in probability). For every c>0 and n>0, thereSexists a 6>0 and an n0 (E , ), such that for n>n t•,n),

S(2.1Y,) P{~'k: jk-nj<6p P(•'k' 'n) }<

Proof. Proceeding as in the proof of Theorem 2.1 of Pyke (1968), namely, as in

his (2.7) through (2.10), we are only to show that as n-•,

(2.14) max 1<k<n (k/n)½ p(0k,O) = 0 (1),

(2.1S) p (Wn,() Sup(fW(t)!: t•Ep} = O (1).
n Pn -

Now, (2.14) has already" been proved in Lemma 2.3, while by Theorem 3.1 of

Neuhaus (1971) alor.g with his treatment on the weak convergence of W to W,
n

it follows that for every c>O, there exists a positive N1 f<-), such that

(2.16) un I ,0) > U K!

= P{p(rO) > mI I < e'; O<•.,<C,
C

which completes the proof of the lemma.

It•
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We now show that {W n is a mixing sequence in the sense of R6nyi (1958).

T"hiS follows by defining

(2.17) Kn() n- {jnk [c(t-Y,)-G(t)]}.- tcFp,
n

n-½ -½
where kn-- !-ut n-kn 0 as n-o, and noting that

(2.18) ln) < n k- 0 as n-.n n

Consequently, proceeding as in the proof of Lemma 3 of Blum, Hanson and Rosenblatt

(1963), we obtain from Lemma 2.4, the followin_.

Lemma 2.5. If .Ac., then for every e>0 and r>O, there exists a A>O, such that

as n-•,

max 1

(2.19) pk Ik-,,<6,. x P(k' n) > ciA} < n.

Let us now define

(220 •(W - Sup{iWn(t)-W n~t'fl: I-'<
(2.20) an- n

Then, from the results of section S of Neuhaus (1971", for every c>O and n>J,

there cxist5 a 6>0, such that

(2.21) limr P{W (n) > c) <

Hence, again using (2.18) and RMnyi's (1958) idea of mixing sequence of sets,

we have for Ac,\P,

(2.22) 1 i m n." fP{wW > E ,A} < n.
)n
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3. The proof of Theorem 1. let [si denote the l.argest integer <s. Then for

(3.1) P{P(WN ,PI ) > c)

-< P{"l'v -N ._ NP{D N 'W':V0 ) > c, Iv- N <_.

F < jv N -C,>6'1 + Ptp 5N• P(Wý.,•N ])>Cl '>0.v - p~k: Ik vr1<6 [a

Thus, if ý=c, a positive wonstant, wit:i probability one [the case treated in

Pyke (1968)], it readily follows from (1.6) and (2.19) that the right hand side

of (3.1) can be bounded by n(>O) by a proper choice cf 6'>O. The proof of the

theorem then follows by noting that by the results of Neuhaus (1971), as %-,.

(3.2) c W, in thu Skorokhod J 1 -typology on DP[o,l].
[vc]

So, in the sequel, we consider the general case of r having an arbitrary

distribution on (0,-). For every r>O, there exists an ao = a.o(n), such that

11
(3.) P{ < a()} < I n.

Consider then a courtdble set of events

(3.4) Ah = {: ao ()r-h6'<E.<ao(.•).(h+1)6'}, h=0,1,...,

and let = ah- 6 ',fl) a a.i)+(h+½)6', h=O,i,... Then, the right hand side of

(3.1) is bounded above by



1 01(3.s) P{Iv- -_01>61 + P{{, < a (nri +

V --

Now, by (1.6) and (3.3), the first two terms on the right hand side of (3.5) are

botnded by !,/.I by proper choice of 6'>O, while by (2.19), the last term can

also be bounded by q/2, by proper choice of V'(>0,, as vah - with -,E for every

h>O. Consequently, as v-,

(3.6) PC~ 011 , W o .

Thus, it suffices to show that as v-,.-,

(3.7) Wi'u W, in the Skorokhod j -topology on DP[0,1;.

Now, (3.2) implies the convergence of the finite dimensional distributionz of

jW I to those of W, while (2.13) implies that for any tcEP, {W (t): Iv-nl<Sn}
V

satisfy the "uniform continuity in probability" condition; these two conditions.

in accordance with Theorem I of Mogyorodi (1965), imply the convergence of the

finite dimensional distributions of {WK to those of W. So, to complete the

proof of the theorem, we require to et-týlish the 'tightness' property of {W'•]

when %.-. By (1.7) and (3.5) of Neuhaus (1971), it suffices to show that for

every c>O and ,i>G, there exists a positive 6, such that as o

(3.8) P{w<(W' ] > < n.

•.•.' `• •• .. `'`:``.: • •.' .• ••`' `• •. • ''6' C ,,-.-o •, •- . .. •. . . .•:• • e•m..z.... •.,•



9

To show this, we note that for every c>O, 6'>0,

(3.9) P{W6' (W < > C)

< P{(• a°C,' + P(W6' 1(,W.,] > c, ,, > aonti

- P(_ ()< + 0h=O P(L6, (Wv >-) --:A., IP(Ah)

< P{( < a (n)} h w[ c }P '
-hO P{C(W[, W ) > 1IA (A 4

,h= [y0 [vah -3 nnh}Ph)

-{ <n a ) + 2. Piws ,(W =-ElcAhlP(A)

+ G P mx 11<1 ,• K

+ -h=O P~k: Ik-[vah :I<-"6 'tah]

which, by (3.3), 12.22) and (2.19), can be made smaller thaan n(>O0 by a

proper choice of 6'(>O). Q.E.D.

A
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